ATRIAL FIBRILLATION AND THE USE OF ORAL ANTICOAGULANTS IN CHINESE PATIENTS

18th Conference on Healthcare of the Chinese in North America

October 8, 2016

Byron K. Lee MD
Professor of Medicine
Samuel T. and Elizabeth Webb Reeves Endowed Chair in Arrhythmia Research
Director of the Electrophysiology Laboratories and Clinics
UCSF, Division of Cardiology

Disclosures

- Biotronik
 - Consulting-Moderate
 - Honorarium-Modest
- Boston Scientific
 - Honorarium-Modest
- CardioNet
 - Consulting-Moderate
- Zoll Medical
 - Research Support- Significant
- Apama
 - Research Support- Modest
- Medtronic
 - Research Support- Significant

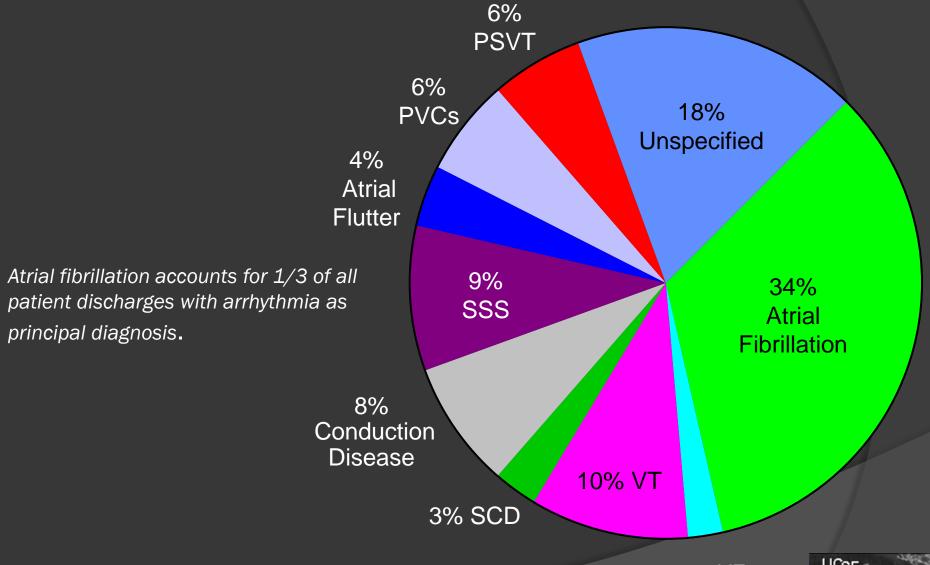
88 year old Chinese woman presents for routine device check

- PMH: SSS, s/p DDD pacemaker, HTN, CRI, Parkinson's Disease
- Meds: Metoprolol XL 25mg daily, lisinopril 10mg daily, ASA 81mg daily
- PE: Unsteady gait
- Echo: Normal LV fxn
- Pacer interrogation: 3 AF episodes lasting 5, 15 and 90 minutes.

Question Anticoagulation therapy:

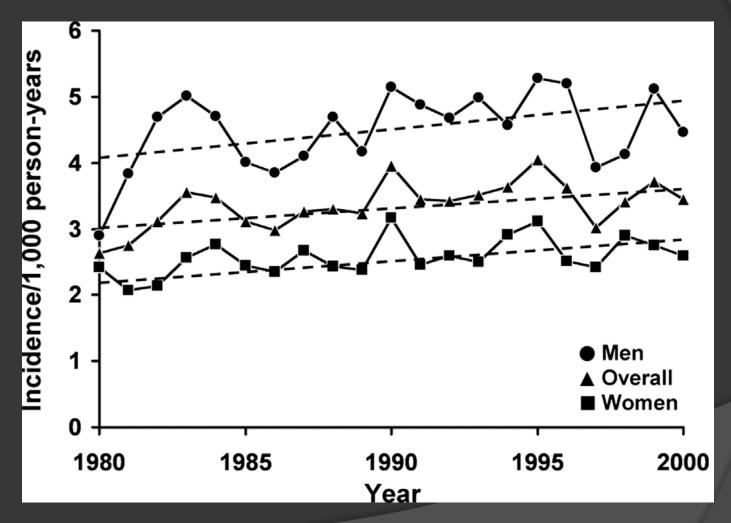
- a) Do nothing
- b) Increase to aspirin 325mg daily
- c) Adjusted dose warfarin INR 2-3
- d) Dabigatran 150mg bid
- e) Rivaroxaban 20mg daily
- f) Apixaban 2.5 mg twice daily

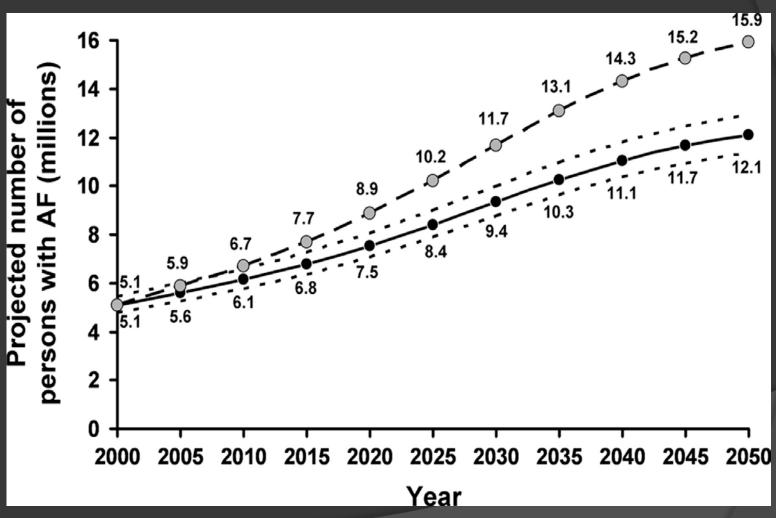
- •Incidence and Disease Burden
- Indications for stroke prophylaxis
- Anticoagulant choice
- Novel devices to prevent stroke



Importance

- AF is the most common sustained arrhythmia in adults
- Affects
 - 4% of everyone over age 60
 - 10% of everyone over age 80
- Aging leads to atrial fibrosis which predisposes to AF


Hospitalization for Arrhythmias (USA)

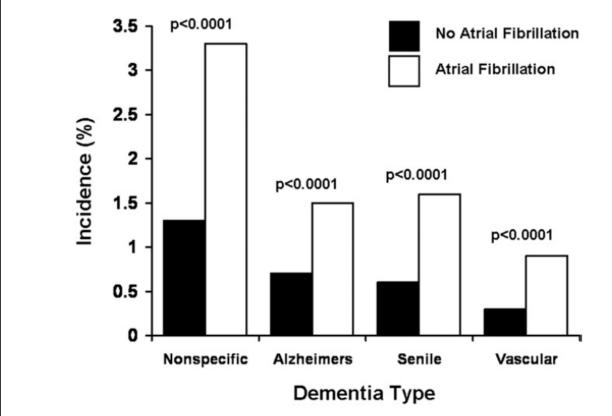

Bialy D et al. JACC. 1992;19:41A

2% VF

Overall and sex-specific trends in age-adjusted incidence of AF between 1980 and 2000 (age adjustment to the 1990 US population)

Projected Prevalence of Atrial Fibrillation in United States between 2000 and 2050

Miyasaka, Y. et al. Circulation 2006:114:119-125


AF Symptoms¹

- Feeling overtired or a lack of energy (most common)
- Pulse that is faster than normal or changing between fast and slow and feels irregular
- Shortness of breath
- Heart palpitations (feeling like your heart is racing, pounding, or fluttering)
- Trouble with everyday exercises or activities
- Pain, pressure, tightness, or discomfort in your chest
- Dizziness, lightheadedness, or fainting
- Increased urination (using the bathroom more often)

AF and Dementia

Figure 1 The incidence of dementia by the patient's AF status. There is a significant increase in dementia in general and in all subtypes in patients with AF.

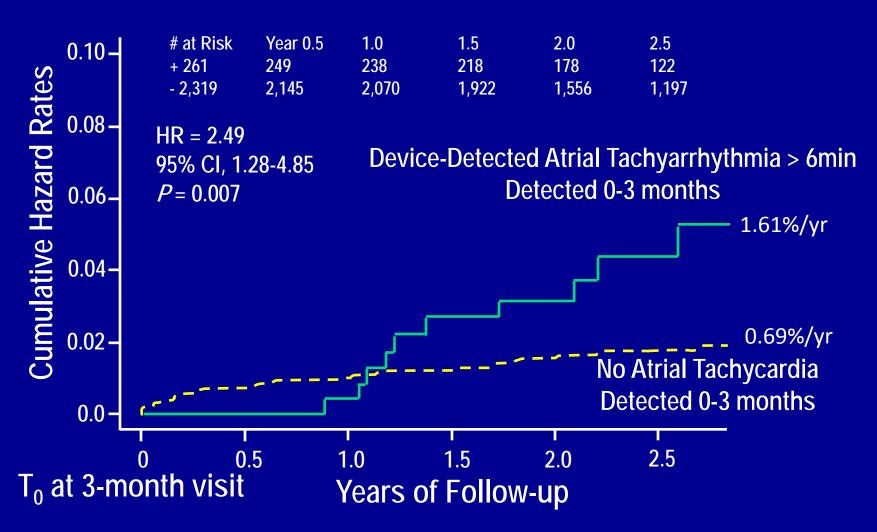
Atrial Fibrillation and Stroke

- AF is the most common cause of embolic stroke¹
- 15% of all strokes in the US can be attributed to AF¹

- Incidence and Disease Burden
- •Indications for stroke prophylaxis
- Anticoagulant choice
- Novel devices to prevent stroke

88 year old Chinese woman presents for routine device check

- PMH: SSS, s/p DDD pacemaker, HTN, CRI, Parkinson's Disease
- Meds: Metoprolol XL 25mg daily, lisinopril 10mg daily, ASA 81mg daily
- PE: Unsteady gait
- Echo: Normal LV fxn
- Pacer interrogation: 3 AF episodes lasting 5, 15 and 90 minutes.



TRENDS Trial AF Burden & Thromboembolic Events

	Annualized Rate (Stroke & TIA)	Annualized Rate (Stroke only)
Zero burden	1.1%	0.5%
Low burden < 5.5 hours	1.1%	1.1%
High burden ≥ 5.5 hours	2.4%	1.8%

Glotzer TV, et al. Circ Arrhythm Electrophysiol. 2009;474-480.

ASSERT Trial Stroke or Systemic Embolism

Healy JS, et al. *N Engl J Med*. 2012;366:120-129.

Device Detected Atrial Fibrillation and Stroke Risk:

Analysis of more than 10,000 patients from the SOS AF project

Giuseppe Boriani, MD, Ph.D, *Taya V. Glotzer, MD*, Massimo Santini, MD, Teena M. West, MSc, Mirko De Melis, Ph.D, Milan Sepsi, MD, Ph.D, Maurizio Gasparini, MD, Thorsten

Lewalter, MD, John A. Camm, MD, Daniel E. Singer, MD

Patient Population

- TRENDS: 2,553 pts enrolled to assess the relationship between device detected AF and TE events
- PANORAMA: 3,556 pts (developing countries) enrolled to investigate the clinical outcome of CIEDs
- Clinical Service Project: 3,907 pts national cardiovascular data repository aimed at describing the use of CIEDs in 150 Italian cardiology centers

Study Design/Methods

- Pts were characterized according to the highest daily burden achieved on any single day during follow-up
- Dichotomized analysis

```
<5 min vs \geq5 min
<1 hr vs \geq1 hr
<6 hr vs \geq6 hr
<12 hr vs \geq12 hr
<23 hr vs \geq23 hr
```

 Results were adjusted for CHADS₂ classification and use of OAC (at baseline)

AF Burden and Risk of Stroke

AF Burden value	<u>Hazard Ratio</u>	95% Confidence Interval	P value
< 5 vs. ≥ 5 min	1.76	1.02-3.02	p=0.041
< 1 vs. ≥ 1 hr	2.11	1.22 to 3.64	p=0.008
< 6 vs. ≥ 6 hr	1.74	0.96 to 3.41	p=0.067
< 12 vs. ≥ 12 hr	1.72	0.92 to 3.22	p=0.090
< 23 vs. ≥ 23 hr	1.44	0.69 to 3.01	p=0.332

AF Burden and Risk of Stroke

- Device detected AF burden is associated with an increased risk of stroke in this population of 10,000 pts with CIEDs
- Dichotomized Analysis: 1 hour of AF burden had the highest hazard ratio doubling the risk of stroke
- Continuous Analysis: every additional hour of daily maximum of AF burden increases the relative risk for stroke by about 3%

DS₂ Score

Failure 1 40/90mmHg) 1

S₂ | Prior T

- Class IIa: If just one risk assessment of bleeding patient preference
 - → aspirin (81-325 mg) o
- Class I: If more than one
 - → warfarin or NOAC

(b) Risk factor-based approach expressed as a point based scoring system, with the acronym CHA₂DS₂-VASc

(Note: maximum score is 9 since age may contribute 0, 1, or 2 points)

Risk factor	Score
Congestive heart failure/LV dysfunction	I
Hypertension	I
Age ≥75	2
Diabetes mellitus	I
Stroke/TIA/thrombo-embolism	2
Vascular disease ^a	
Age 65–74	1
Sex category (i.e. female sex)	
Maximum score	9

CHA₂DS₂-VASc Improves Risk Stratification of AF Patients With a CHADS₂ Score of 0–1

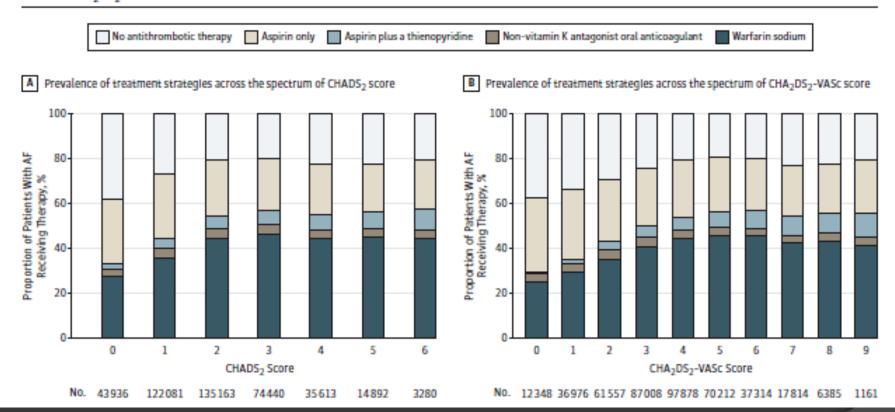
	1 Year Follow-up			
	Person- years	Events	Stroke Rate	(95% CI)
CHADS ₂ score=0	17,327	275	1.59	(1.41-1.79)
CHA ₂ DS ₂ -VASc=0	6919	58	0.84	(0.65-1.08)
CHA ₂ DS ₂ -VASc=1	6811	119	1.75	(1.46-2.09)
CHA ₂ DS ₂ -VASc=2	3347	90	2.69	(2.19-3.31)
CHA ₂ DS ₂ -VASc=3	250	8	3.20	(1.60-6.40)
CHADS ₂ score=1	22,945	1130	4.92	(4.65-5.22)
CHA ₂ DS ₂ -VASc=1	2069	40	1.93	(1.42-2.64)
CHA ₂ DS ₂ -VASc=2	8516	345	4.05	(3.65-4.50)
CHA ₂ DS ₂ -VASc=3	11,223	652	5.81	(5.38-6.27)
CHA ₂ DS ₂ -VASc=4	1137	93	8.18	(6.68-10.02)

CHA₂DS₂-VASc score

CHA ₂ DS ₂ -VASc score	Patients (n = 73538)	Stroke and thromboembolism event rate at 1 year follow-up (%)
0	6369	0.78
I	8203	2.01
2	12771	3.71
3	17371	5.92
4	13887	9.27
5	8942	15.26
6	4244	19.74
7	1420	21.50
8	285	22.38
9	46	23.64

Score	Risk	Anticoagulation Therapy	Considerations
0	Low	No antithrombotic therapy (or Aspirin)	No antithrombotic therapy (or Aspirin 75-325mg daily)
1	Moderate	Oral anticoagulant (or Aspirin)	Oral anticoagulant, either new oral anticoagulant drug eg dabigatran or well controlled warfarin at INR 2.0-3.0 (or Aspirin 75-325mg daily, depending on factors such as patient preference)
2 or greater	High	Oral anticoagulant	Oral anticoagulant, using either a new oral anticoagulant drug (eg dabigatran) or well controlled warfarin at INR 2.0- 3.0

Adapted from Olesen JB. BMJ 2011;342:d124


Since 2010, further validation of the CHA2DS2-VASc score

Lip GY. *J Thromb Haemost* 2011;**9** Suppl 1:344–351. Potpara TS, et al. *Circ Arrhythm Electrophysiol* 2012;**5**:319–326. Olesen JB, et al. *Thromb Haemost* 2012;**107**:1172–1179 Van Staa TP, et al. *J Thromb Haemost* 2011;**9**:39–48. Abu-Assi E, et al. *Int J Cardiol.* 2011 January CT, et al. 2014 AHA/ACC/HRS Guideline for the Management of Patients with Atrial Fibrillation. 2014

Recommendations for prevention of thromboembolism in non- valvular AF - general		
Recommendations	Class	Level
The CHA ₂ DS ₂ -VASc score is recommended as a means of assessing stroke risk in non-valvular AF.	- 1	Α

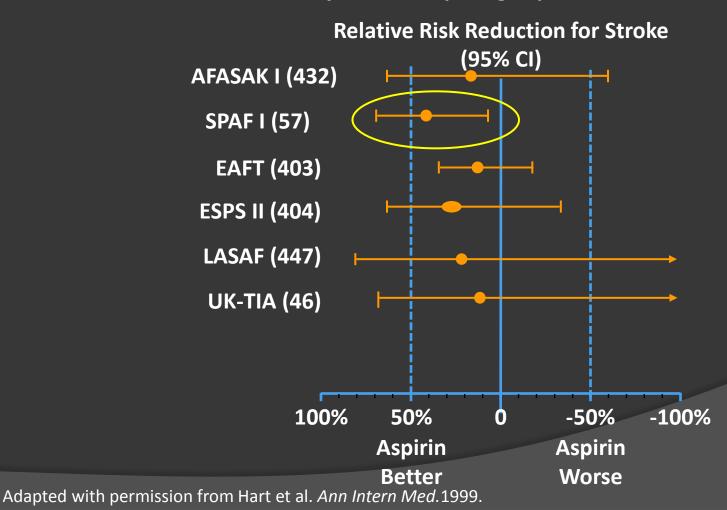
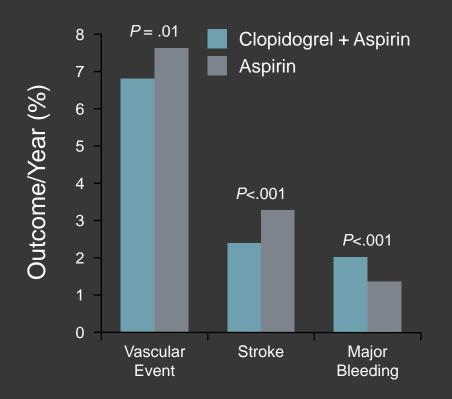
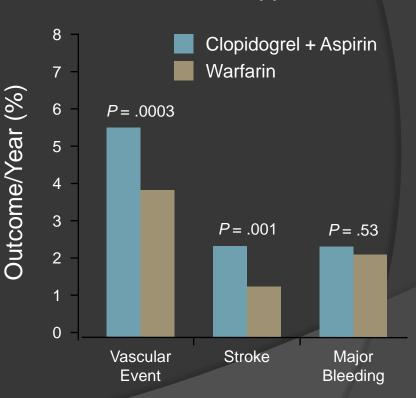

Eur Heart J 2012;33:2719-2747

Figure 2. Prevalence of Antithrombotic Therapies in Patients With Atrial Fibrillation (AF) Across the Spectrum of Stroke Risk by the CHADS₂ Score and the CHA₂DS₂-VASc Score


Aspirin Is Not an Effective Anticoagulation Therapy in AF

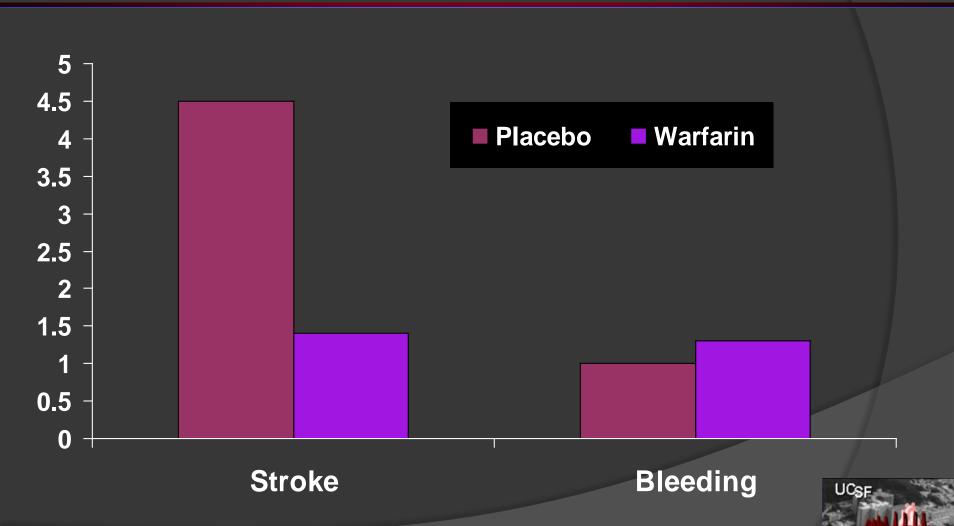
Early Trials Comparing Aspirin with Placebo



Antiplatelet Therapy in AF

ACTIVE-A: 7554 randomized patients; median follow-up of 3.6 years

ACTIVE-W: 6706 randomized patients; trial stopped



ACTIVE = Atrial Fibrillation Clopidogrel Trial with Irbesartan for Prevention of Vascular Events. Writing Group of the ACTIVE Investigators, et al. *Lancet*. 2006;367(9526):1903-1912. ACTIVE Investigators, et al. *N Engl J Med*. 2009;360(20):2066-2078.

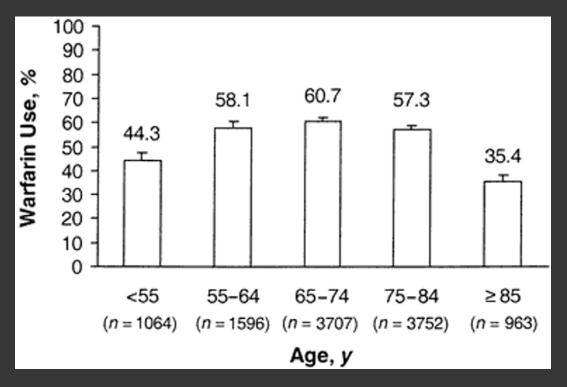
Bottom Line: ASA for Stroke Prevention

- Aspirin can be considered for low risk AF patients
- Little role for aspirin in moderate to high risk
 AF patients

Risk of Stroke and Bleeding with Warfarin in Atrial Fibrillation

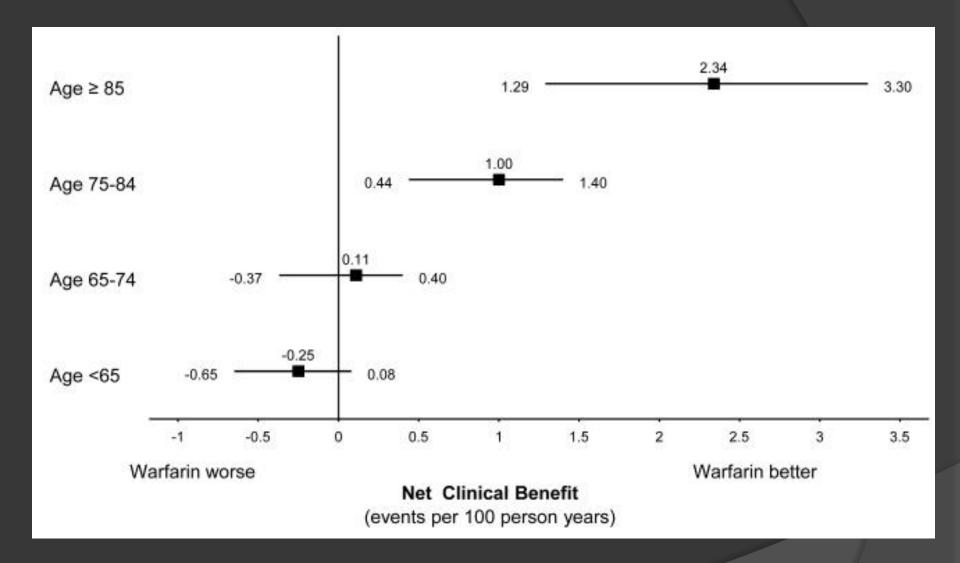
88 year old Chinese woman presents for routine device check

- PMH: SSS, s/p DDD pacemaker, HTN, CRI, Parkinson's Disease
- Meds: Metoprolol XL 25mg daily, lisinopril 10mg daily, ASA 81mg daily
- PE: Unsteady gait
- Echo: Normal LV fxn
- Pacer interrogation: 3 AF episodes lasting 5, 15 and 90 minutes.



Annals of Internal Medicine

ESTABLISHED IN 1927 BY THE AMERICAN COLLEGE OF PHYSICIANS


From: Warfarin Use among Ambulatory Patients with Nonvalvular Atrial Fibrillation: The AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study

Ann Intern Med. 1999;131(12):927-934. doi:10.7326/0003-4819-131-12-199912210-00004

Figure Legend:

Prevalent warfarin use by age among 11 082 ambulatory patients with nonvalvular atrial fibrillation and no identified contraindications to warfarin therapy. Numbers in parentheses represent the number of patients in the denominator of each category. Error bars represent upper 95% confidence limits.

88 year old Chinese woman presents for routine device check

- PMH: SSS, s/p DDD pacemaker, HTN, CRI,
 Parkinson's Disease
- Meds: Metoproiol XL 25mg daily, lisinopril 10mg daily, ASA 81mg daily
- PE: Unsteady gait
- Echo: Normal LV fxn
- Pacer interrogation: 3 AF episodes lasting 5, 15 and 90 minutes.

Choosing Antithrombotic Therapy for Elderly Patients With Atrial Fibrillation Who Are at Risk for Falls

Malcolm Man-Son-Hing, MD, MSc, FRCPC; Graham Nichol, MD, MPH, FRCPC; Anita Lau; Andreas Laupacis, MD, MSc, FRCPC

Objective: To determine whether the risk of falling (with a possible increased chance of subdural hematoma) should influence the choice of antithrombotic therapy in elderly patients with atrial fibrillation.

Design: A Markov decision analytic model was used to determine the preferred treatment strategy (no antithrombotic therapy, long-term aspirin use, or long-term warfarin use) for patients with atrial fibrillation who are 65 years of age and older, are at risk for falling, and have no other contraindications to antithrombotic therapy. Input data were obtained by systematic review of MED-LINE. Outcomes were expressed as quality-adjusted life-years.

Results: For patients with average risks of stroke and

falling, warfarin therapy was associated with 12.90 qualityadjusted life-years per patient; aspirin therapy, 11.17 quality-adjusted life-years; and no antithrombotic therapy, 10.15 quality-adjusted life-years. Sensitivity analysis demonstrated that, regardless of the patients' age or baseline risk of stroke, the risk of falling was not an important factor in determining their optimal antithrombotic therapy.

Conclusions: For elderly patients with atrial fibrillation, the choice of optimal therapy to prevent stroke depends on many clinical factors, especially their baseline risk of stroke. However, patients' propensity to fall is not an important factor in this decision.

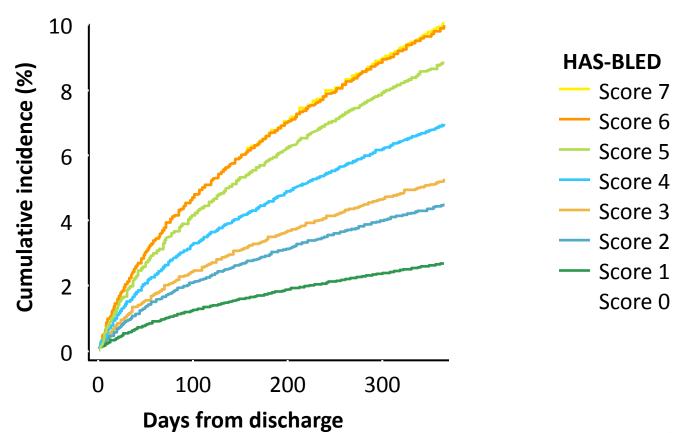
Arch Intern Med. 1999;159:677-685

Estimated that a patient had to fall 295x per year for the risk of intracranial hemorrhage to outweigh the benefit of warfarin!

88 year old Chinese woman presents for routine device check

- PMH: SSS, s/p DDD pacemaker, HTN, CRI, Parkinson's Disease
- Meds: Metoprolol XL 25mg daily, lisinopril 10mg daily, ASA 81mg daily
- PE: Unsteady gait
- Echo: Normal LV fxn
- Pacer interrogation: 3 AF episodes lasting 5, 15 and 90 minutes.

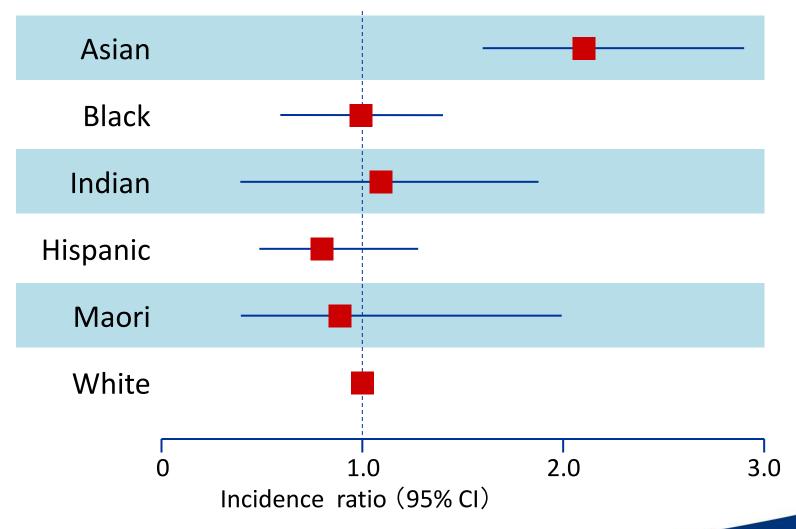
The HAS-BLED bleeding risk score


Letter	Clinical characteristic*	Points awarded	
)H)	Hypertension	5)(5)(5) (5)(5)	
Α	Abnormal renal and liver function (1 point each)	(1 pointeach) 1 or 2	
S	Stroke	1000010000	
В	Bleeding	nos con tuco c	
o L	Labile INRs	10000	
E	Elderly (e.g. age > 65 years)	1	
D	Drugs or alcohol (1 point each)	1 or 2	
99		Maximum 9 points	

^{*}Hypertension is defined as systolic blood pressure > 160 mmHg. INR = international normalized ratio.

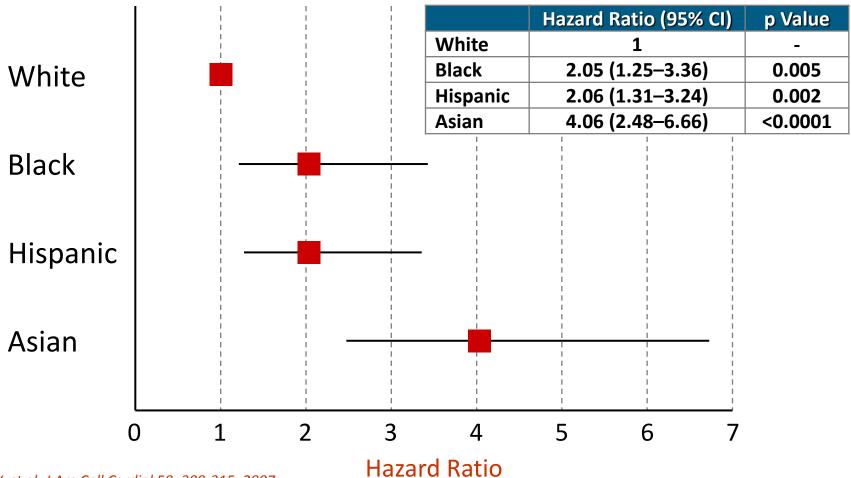
Higher bleeding rates seen with high HAS-BLED score (*p*-value for trend < 0.001)

Cumulative incidence of bleeding* by HAS-BLED score



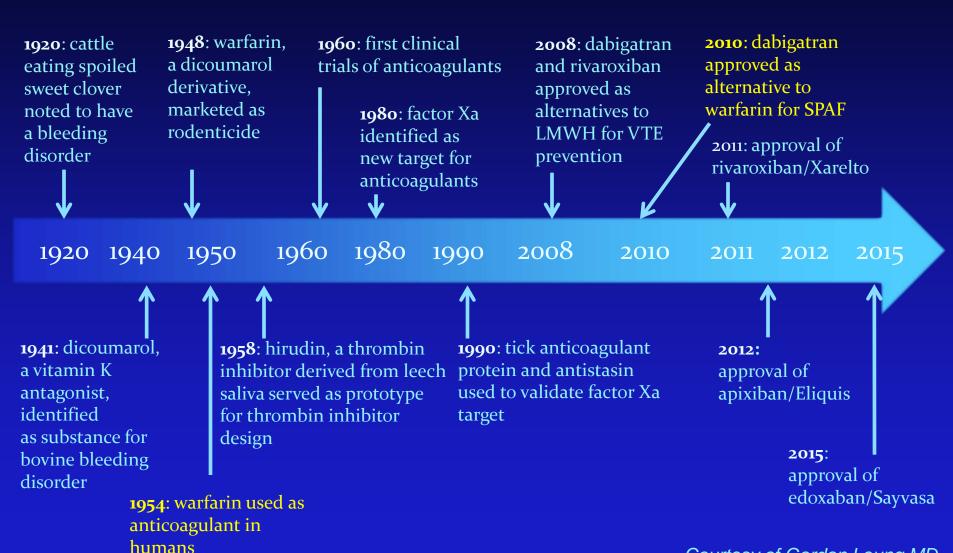
88 year old Chinese woman presents for routine device check

- PMH: SSS, s/p DDD pacemaker, HTN, CRI, Parkinson's Disease
- Meds: Metoprolol XL 25mg daily, lisinopril 10mg daily, ASA 81mg daily
- PE: Unsteady gait
- Echo: Normal LV fxn
- Pacer interrogation: 3 AF episodes lasting 5, 15 and 90 minutes.



Incidence Ratios of Cerebral Hemorrhage in Different Ethnic Groups (Meta-analysis)

Adjusted Hazard Ratio for Intracranial Hemorrhage on Warfarin Treatment


Shen AY, et al: J Am Coll Cardiol 50: 309-315, 2007

- Incidence and Disease Burden
- Indications for stroke prophylaxis
- Anticoagulant choice
- Novel devices to prevent stroke

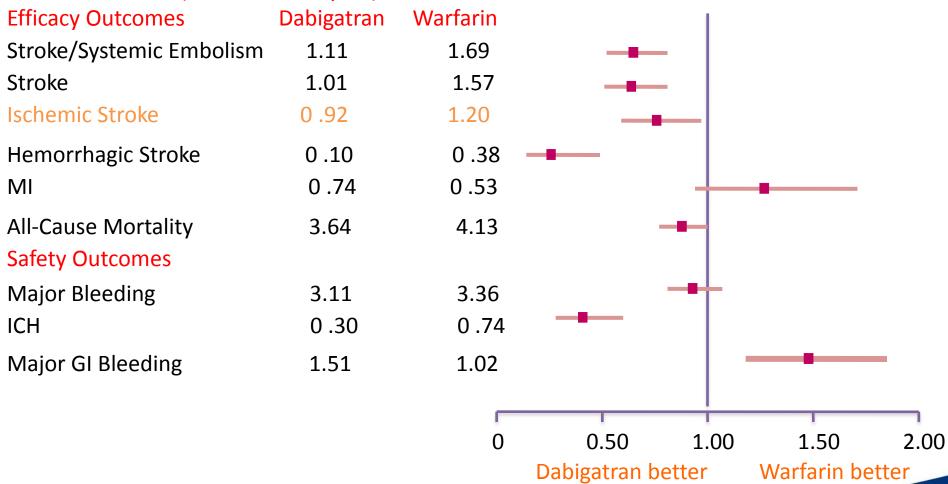
Historical perspective of anticoagulation

Courtesy of Gordon Leung MD

Table 2: Properties of Warfarin and the NOACs

•	Warfarin	Dabigatran	Rivaroxaban	Apixaban	Edoxaban
Molecular target	Vitamin K dependent clotting factors	Thrombin	Factor Xa	Factor Xa	Factor Xa
Dosing in AF	Once daily	Twice daily	Once daily	Twice daily	Once daily
Time to peak plasma concentration (mins)	240.00	85-150	30 -180	30-120	30-60
Time to peak effect (h)	96-120	2	2-3	1-2	1-2
Half life (h)	40.00	14-17	5-9 (increased to 11-13 in elderly)	8-15	9-11
Renal clearance	<1%	≈80%	≈30%	≈27%	0.35
Food and drug interactions	Foods rich in vitamin K, Substrates of CYP2C9, CYP3A4 and CYP1A2	Strong P-gp inhibitors and inducers		Strong inhibitors and inducers of CYP3A4 and P-gp	Strong P-gp inhibitors
Creatine clearance below which drug is contraindicated	n/a	<30mL/min	<15mL/min	<15mL/min	<30mL/min (Japan)

Characteristics of New Oral Anticoagulants

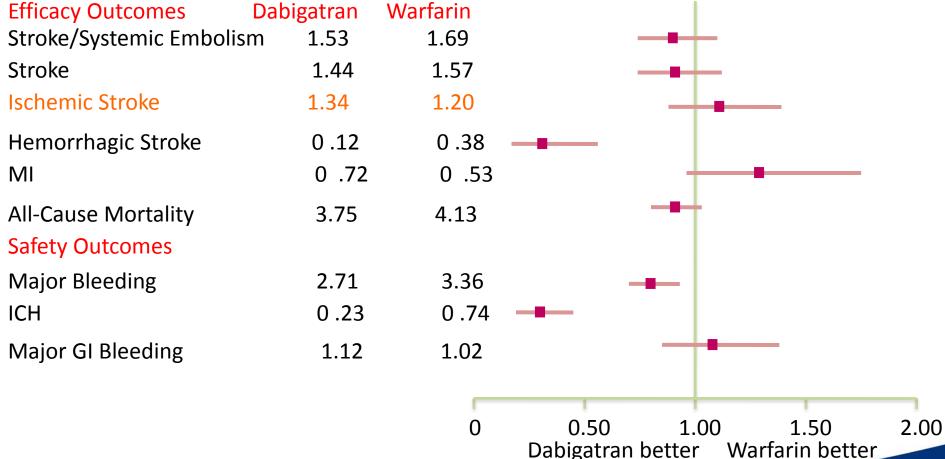

Drug	Dabigatran	Rivaroxaban	Apixaban	
Mechanism of action	Thrombin inhibitor	Factor Xa inhihitor	Factor Xa inhihitor	
T _{1/2}	14-17 hours	5-11 hours	12 hours	
Regimen	RID	GD' RID	RID	
Peak to trough	2	12 (QD)	3-5	
Renal excretion of absorbed drug	~80%	36%-45%	25%-30%	
Potential for drug interactions	P- glycoprotein inhibitor	CYP3A4 substrate and P-glycopr inhibitor	CYP3A4 substrate and P-glycopr inhibitor	

CYP3A4 = cytochrome P450 3A4.

Usman MH Ezekowitz : *Curr Treat Cardiovasc Med.* 2008;10(5):388-397. Piccini JP, et al. *Cardiol.* 2010;25(4):312-320.

RELY - Dabigatran 150 mg vs Warfarin (TTR 66%) Chads2 Score 2.1 (Mean)

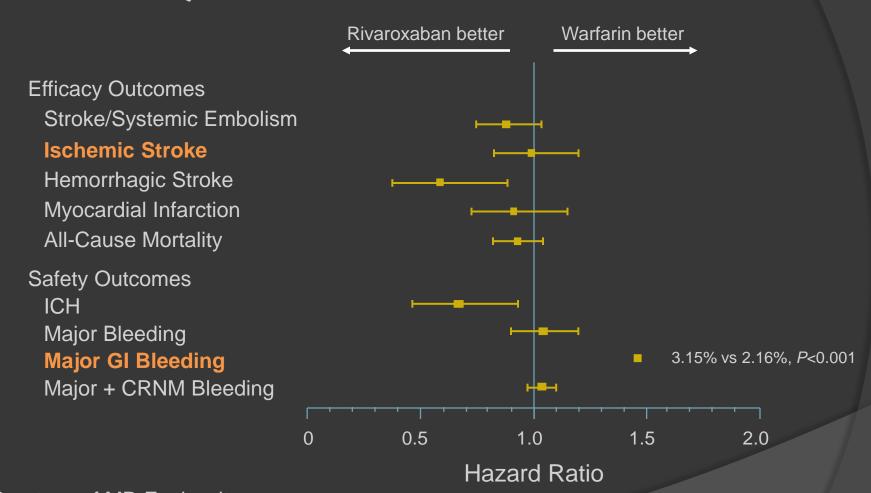
(Event Rate, %/year)



Connolly SJ, Ezekowitz MD et al. N Engl J Med. 2009;361(12):1139-1151.

RELY – Dabigatran 110 mg vs. Warfarin

(Event Rate, %/year)

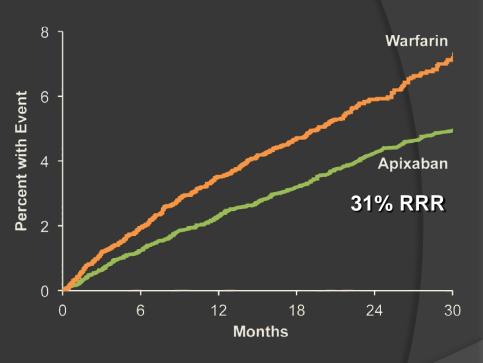


Connolly SJ, Ezekowitz MD et al. N Engl J Med. 2009;361(12):1139-1151.

ROCKET AF: Rivaroxaban vs. Warfarin (TTR 55%)

Mean CHADS₂ score = 3.5

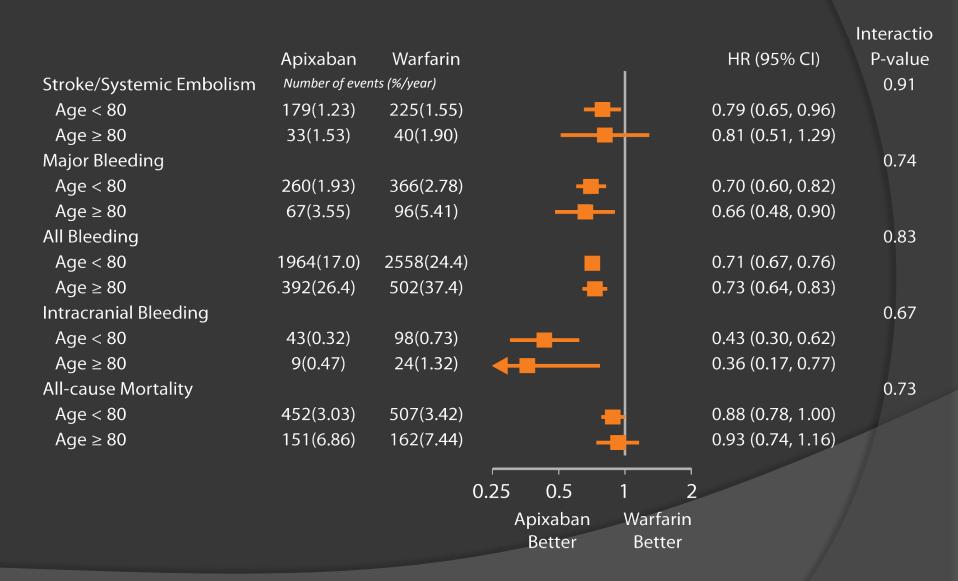
Courtesy of MD Ezekowitz. Mahaffey KW. Presented at AHA, November 2010. Patel M et al. N Engl J Med. 2011;365:883-891.

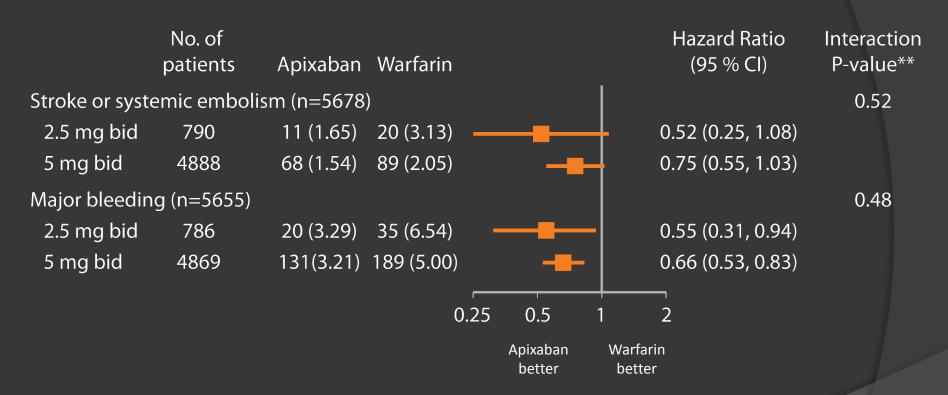

ARISTOTLE Main Trial Results

Stroke or systemic embolism

Warfarin Apixaban 21% RRR Months

Apixaban 212 patients, 1.27% per year Warfarin 265 patients, 1.60% per year HR 0.79 (95% CI, 0.66–0.95); P=0.011


ISTH major bleeding


Apixaban 327 patients, 2.13% per year Warfarin 462 patients, 3.09% per year HR 0.69 (95% CI, 0.60–0.80); P<0.001

Apixaban vs Warfarin in Patients ≥ 80 vs < 80 Years

Stroke or Systemic Embolism and Major Bleeding in patients ≥75 years* in Relation to Apixaban dose

^{*} A reduced dose of 2.5 mg twice daily or placebo were administered to a total of 831 patients; 790 of these patients were ≥75 years

^{**} Interaction among treatment, dose, and age based on randomized or treated population

TSOA for stroke prevention in Asian patients with nonvalvular atrial fibrillation

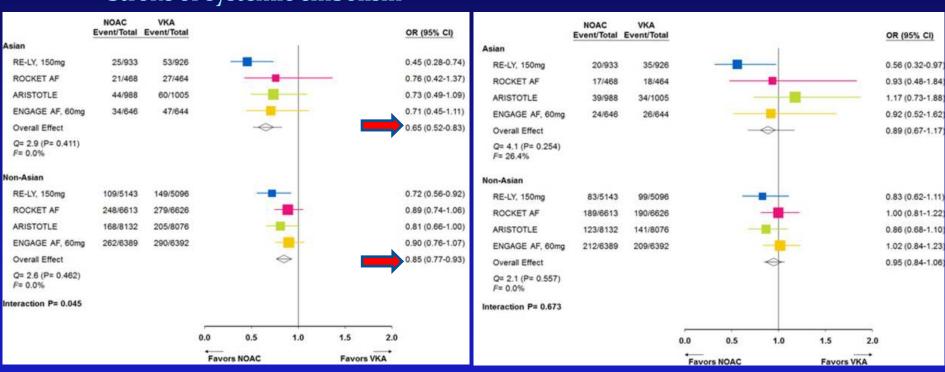
Non-Vitamin K Antagonist Oral Anticoagulants for Stroke Prevention in Asian Patients With Nonvalvular Atrial Fibrillation Meta-Analysis American Heart Association

Kang-Ling Wang, MD; Gregory Y.H. Lip, MD; Shing-Jong Lin, MD, PhD; Chern-En Chiang, MD, PhD

Background and Purpose—The use of vitamin K antagonists (VKAs), the cornerstone treatment for stroke prevention in patients with atrial fibrillation, is limited by the perceived risk of serious bleeding in Asia. Non-VKA oral anticoagulants (NOACs) are safer alternatives. Here, we evaluate performance differences of NOACs between Asians and non-Asians.

Methods—We compared efficacy and safety of NOACs between patients enrolled in Asian and non-Asian countries using aggregative data from phase III clinical trials. The odds ratios (ORs [95% confidence interval]) were calculated by a random effects model.

Results—Comparing with VKAs, standard-dose NOACs reduced stroke or systemic embolism (OR=0.65 [0.52–0.83] versus 0.85 [0.77–0.93], *P* interaction= 0.045) more in Asians than in non-Asians and were safer in Asians than in non-Asians about major bleeding (OR=0.57 [0.44–0.74] versus 0.89 [0.76–1.04], *P* interaction=0.004), hemorrhagic stroke (OR=0.32 [0.19–0.52] versus 0.56 [0.44–0.70], *P* interaction=0.046) in particular, whereas gastrointestinal bleeding was significantly increased in non-Asians (OR=0.79 [0.48–1.32] versus 1.44 [1.12–1.85], *P* interaction=0.041). Generally, low-dose NOACs were safer than VKAs without heterogeneity in efficacy and safety between Asians and non-Asians, except for ischemic stroke, major, and gastrointestinal bleeding.

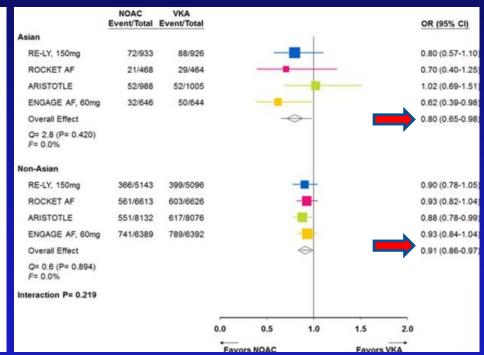

Conclusions—Our findings suggest that standard-dose NOACs were more effective and safer in Asians than in non-Asians, whereas low-dose NOACs performed similarly in both populations. (Stroke. 2015;46:2555-2561. DOI: 10.1161/STROKEAHA.115.009947.)

Key Words: anticoagulants ■ atrial fibrillation ■ hemorrhage ■ stroke

Efficacy outcomes of stroke/systemic embolism and ischemic stroke for TSOA vs VKA

Stroke or systemic embolism

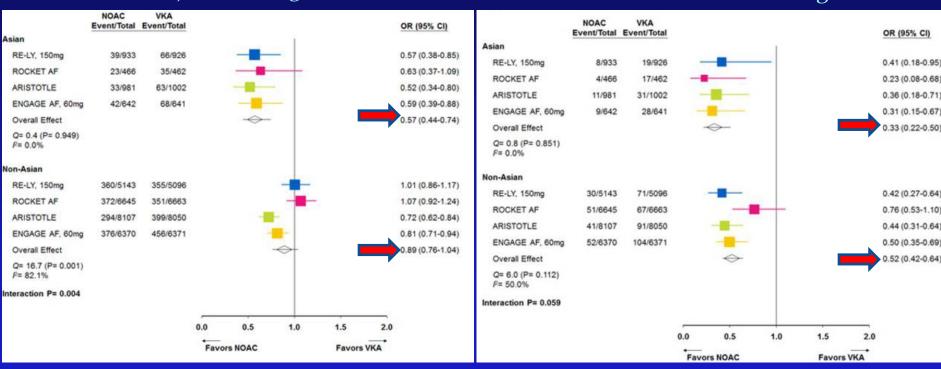
Ischemic stroke

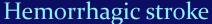

Efficacy outcomes of myocardial infarction and all cause mortality for NOAC vs VKA

Myocardial infarction

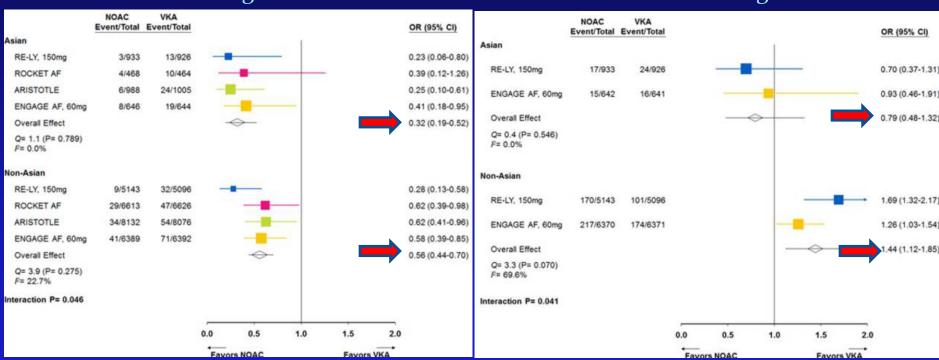
Event/Total Event/Total OR (95% CI) Asian RE-LY, 150mg 9/933 10/926 0.89 (0.36-2.21) ROCKET AF 8/468 8/464 0.99 (0.37-2.66) ARISTOTLE 8/988 7/1005 1.16 (0.42-3.22) ENGAGE AF. 60mg 7/646 8/644 0.87 (0.31-2.42) Overall Effect 0.97 (0.59-1.58) Q= 0.2 (P= 0.978) P= 0.0% Non-Asian RE-LY, 150mg 88/5143 65/5096 1.35 (0.98-1.86) ROCKET AF 122/6613 134/6626 0.91 (0.71-1.17) ARISTOTLE 82/8132 0.86 (0.64-1.15) 95/8076 ENGAGE AF, 60mg 126/6389 133/6392 0.95 (0.74-1.21) 0.98 (0.82-1.12) Overall Effect Q= 4.9 (P= 0.176) F= 39.3% Interaction P= 0.977

1.0


All cause mortality


Safety outcomes of major bleeding and intracranial hemorrhage for TSOA vs VKA in Asians vs Non-Asians

Major bleeding


Intracranial hemorrhage

Safety outcomes of hemorrhagic stroke and GI bleeding for TSOA vs VKA in Asians vs Non-Asians

GI bleeding

82 year old Chinese woman with AF detected by cardiac device, HTN, CRI.

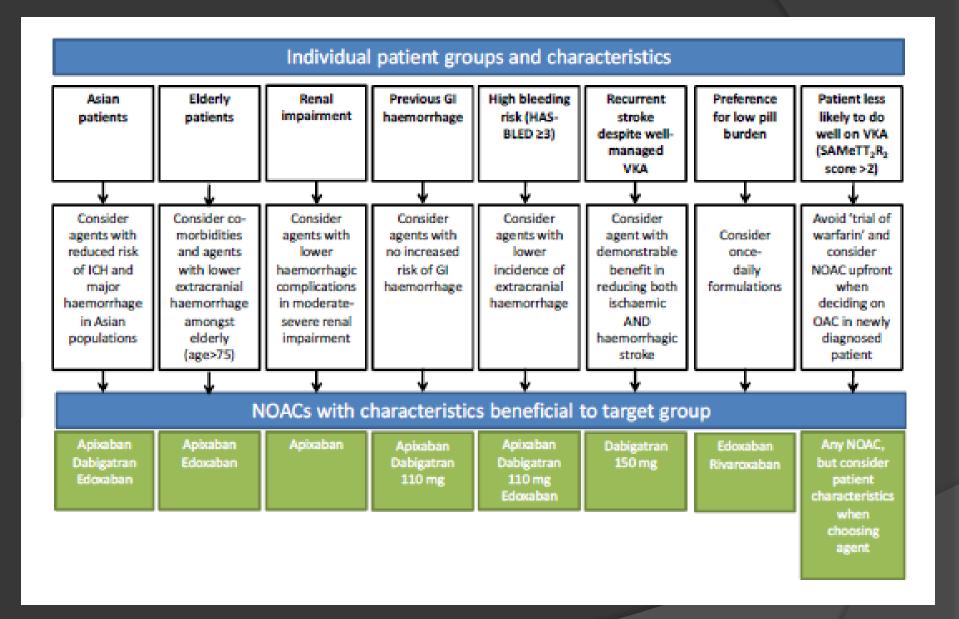
Anticoagulant therapy:

- a) Do nothing
- b) Increase aspirin 325mg daily
- c) Adjusted dose warfarin INR 2-3
- d) Dabigatran 150mg bid
- e) Rivaroxaban 20mg daily
- f) Apixaban 2.5 mg twice daily

82 year old Chinese woman with AF detected by cardiac device, HTN, CRI.

CHA₂DS₂-VASc score = 4 for HTN, Age2, Sex \rightarrow stroke stroke HASBLED score = 3 for HTN, CRI, Age \rightarrow 5.0 %/year risk of major bleed Anticoagulant therapy:

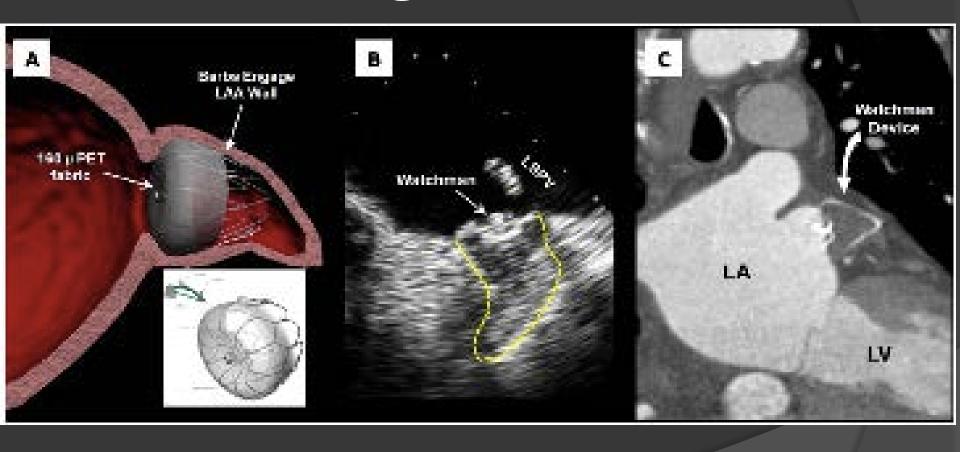
- a) Do nothing
- b) Increase aspirin 325mg daily
- c) Adjusted dose warfarin INR 2-3
- d) Dabigatran 150mg bid
- e) Rivaroxaban 20mg daily
- f) Apixaban 2.5 mg twice daily



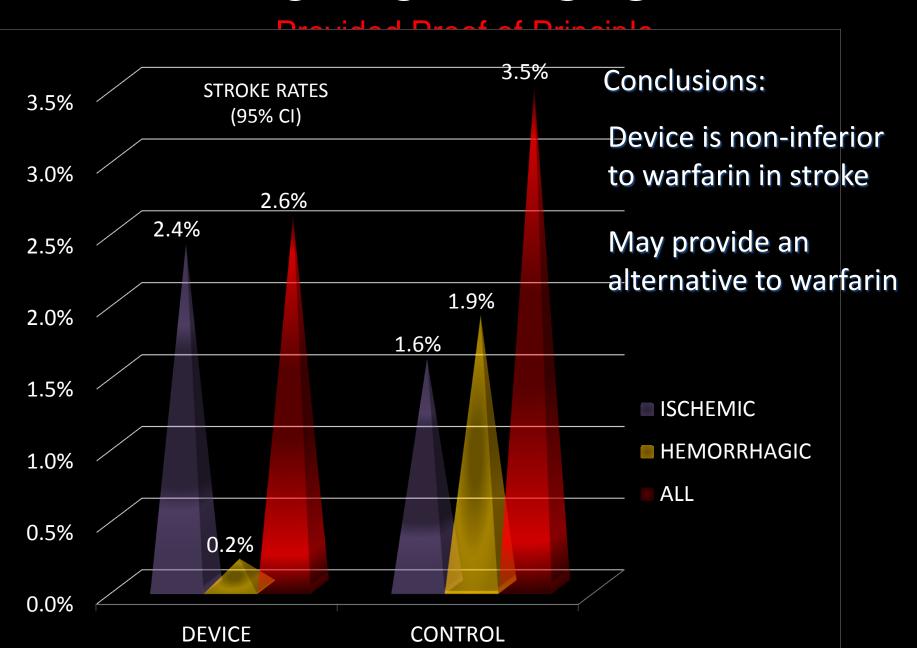
82 year old Chinese woman with AF detected by cardiac device, HTN, CRI.

CHA₂DS₂-VASc score = 4 for HTN, Age2, Sex HASBLED score = 3 for HTN, CRI, Age
Anticoagulant therapy:

- a) Do nothing
- b) Increase aspirin 325mg daily
- c) Adjusted dose warfarin INR 2-3
- d) Dabigatran 150mg bid
- e) Rivaroxaban 20mg daily
- f) Apixaban 2.5 mg twice daily

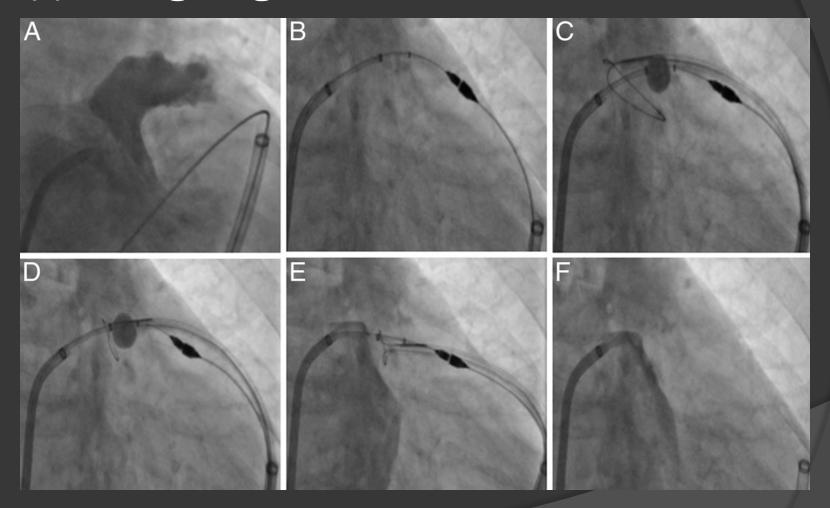


- Incidence and Disease Burden
- Indications for stroke prophylaxis
- Anticoagulant choice
- Novel devices to prevent stroke



Watchman Device to occlude Left Atrial Appendage

PROTECT AF STUDY



Thrombus after Watchman Implant

Percutaneous Epicardial Left Atrial Appendage Ligation

Summary

- AF is common and increasing in prevalence
- Asymptomatic AF found lasting over 1 hour should prompt consideration of stroke prophylaxis
- CHA2DS2-VASc should replace CHADS2
- Neither aspirin nor aspirin/clopidogrel is enough for moderate to high risk AF patients
- Older age should make clinicians want to anticoagulate their patients more
- Falls are not good reasons to withhold anticoagulation
- Use HAS-BLED score to weigh risk of bleeding against risk of stroke
- NOACs have lower risk of bleeding and ICH when compared to coumadin, and appear to be particularly safe in Asians
- Novel devices may someday replace oral anticoagulants