The Thalassemias in Clinical Practice

Ashutosh Lal, MD Director Comprehensive Thalassemia Program UCSF Benioff Children's Hospital Oakland

Outline

- •Thalassemia: definitions and pathophysiology
- Epidemiology
- Classification of thalassemia syndromes
- Diagnosis of thalassemia
- Treatment of thalassemia

Hemoglobin

• Hemoglobin is a tetramer of 2 pairs of unlike globin chains

2 alpha chains	2 beta chains	$\alpha_2\beta_2$	Adult hemoglobin or HbA
2 alpha chains	2 gamma chains	$\alpha_2 \gamma_2$	Fetal hemoglobin or HbF
2 alpha chains	2 delta chains	$\alpha_2 \delta_2$	Minor adult hemoglobin or HbA2

Alpha genes are encoded on chromosome 16There are 2 copies of alpha genes on each Ch.16Gamma, delta and beta genes are encoded on chromosome 11There is a single copy of each of these genes on each Ch.11

Fetal

Hb F: $\alpha 2 \gamma 2$

Thalassemias: Quantitative defects of globin chain synthesis

Molecular Pathogenesis: beta thalassemia

Molecular Pathogenesis: alpha thalassemia

Normal 4 alpha genes M: 14.5-16.5; F: 13-15 Silent Carrier *3 alpha genes, 1 del* M: 13-15.5; F: 11.5-13.5

Heterozygous α⁰ Trait 2 alpha genes, 2 del M: 12-14; F: 10.5-12.5

Homozygous α⁺ Trait 2 alpha genes, 2 del M: 12-14; F: 10.5-12.5

Genetic basis of α thalassemia

Two α genes (α 2 and α 1) are located on each Ch. 16

Common 1 gene deletions: -3.7 Kb and -4.2 Kb Common alpha mutation: Constant Spring Common 2 gene deletions: SEA, MED, THAI, FIL

 α^+ : 1 intact α gene α^0 : 0 intact α genes

Hemoglobin H Disease 1 alpha gene, 3 del M: 10-12; F: 8.5-10.5

Hemoglobin H Constant Spring 1 alpha gene, 1 mutation M: 10-12; F: 8.5-10.5

> Alpha Thal Major *0 alpha genes, 4 del* Severe Anemia in Fetus

Transfusion Dependence in Thalassemia Syndromes

Annual Births of Severe Thalassemia Syndromes

Modell 2008, Bull WHO

Distribution of Thalassemia in China

Adapted from Zeng & Huang. J Med Genet. 1987:578 and others

Distribution of Thalassemia in USA (estimated)

Oakland Data, HRSA, TCRN, plus extrapolation

Distribution of Ethnicities at Oakland

Diagnosis of Thalassemia: Thalassemia Trait

- When to suspect thalassemia trait
 - Mild anemia Hemoglobin 10-12 g/dL
 - Microcytosis MCV <80
 - Hypochromia MCH <28
 - RBC count
 Normal or Increased
 - RDW Normal
- What is the best time to screen at risk population
 - Beta thal trait: at 1 year CBC
 - Alpha thal trait: At birth (currently not possible), otherwise at 1 year CBC
- Genetic counseling should follow screening
 - All activities should ideally take place in primary care practice
 - Prepare PCP's caring for at risk population to provide counseling for thalassemia trait
 - Different counseling for alpha and beta thalassemia

Diagnosis of Thalassemia Disease

- Prenatal diagnosis
 - When both parents are known carriers of thalassemia mutation
 - Test second parent if one parent is known thalassemia trait
 - Prenatal testing with CVS or amnio if both have beta trait or both have alpha trait
 - No consequence if one parent has alpha trait and one parent has beta trait
- Newborn screening for thalassemia syndromes
 - Possible to diagnose severe thalassemia syndromes
 - Alpha thalassemia: Hb Bart's
 - Beta Thalassemia: Hb F
 - E beta Thalassemia: Hb E
- Diagnosis of moderate or severe thal syndromes
 - CBC with hemoglobin <10 g/dL, microcytosis (sometimes mild), hypochromia, nucleated RBC
 - Splenomegaly, elevated bilirubin, growth impairment
 - Hemoglobin electrophoresis, DNA testing

Common Thalassemia Syndromes

• Beta thalassemias:

Condition	Genotype	Hemoglobin
Beta thal major	2 beta mutations	Hb <7 g/dL
Beta thal intermedia	2 beta mutations	Hb >7 g/dL
E beta thal	1 beta mutation with E	Hb 4-9 g/dL
	mutation	

• Alpha thalassemias:

Condition	Genotype	Hemoglobin
HbH disease	3 alpha gene deletion	Hb 8-12 g/dL
HbH Constant Spring	2 alpha gene deletion +	Hb 7-10 g/dL
	Constant Spring mutation	
Alpha thal major	4 alpha gene deletion	Fetal hydrops

Treatment of Thalassemia

- Deciding between regular transfusions and conservative management
- Pros and cons of transfusions
- Alternatives to transfusions
- Curative therapies

Transfusion Dependence in Thalassemia Syndromes

Comparison of Average Hemoglobin Levels

Individuals without thalassemia	• 13-16 g/dL	
Thalassemia intermedia not receiving transfusions	• 6-9 g/dL	
Thalassemia major receiving regular transfusions	• 11-12 g/dL	

Why not transfuse all individuals with thalassemia intermedia?

Complications of Low Hemoglobin in Non-Transfused Thalassemia

Children

- Bone changes: face and head size
- Feeding difficulties
- Sweating
- Lack of weight gain
- Growth delay
- Splenomegaly

10-15 years

- Growth delay
- Pubertal delay
- Progressive splenomegaly
- Facial bone changes
- Fatigue
- Extramedullary masses

Adults

- Extra-medullary masses
- Fatigue
- Pain
- Thrombosis
- Pulmonary hypertension,
- Cerebral vacsulopathy
- Leg ulceration
- Fractures

Transfusions have become very safe, but still have risks

Risks

- Iron overload
- Antibody formation
- Viral infections
- More hospital visits

Benefits

- Activity, appetite, growth
- Prevent bone changes
- Prevent spleen enlargement

Role of Splenectomy

- Splenectomy is no longer recommended to delay or prevent transfusions
 - Transfusions are safer
 - More risks of splenectomy in the long term
 - Many patients will still require transfusions later on
- But, progressive splenomegaly worsens anemia
 - So, splenomegaly should be prevented by early recognition and starting transfusions
 - Splenomegaly is reversible in the first decade, but not later on

Deciding on chronic transfusions

- Beta/Beta thalassemia
 - Baseline hemoglobin <7 g/dL, with or without symptoms
 Or
 - Baseline hemoglobin >7 g/dL AND *symptoms of anemia*
- E Beta Thalassemia
 - Symptoms of anemia
- Hemoglobin H Disease
 - Intermittent transfusions in Hb H Constant Spring
 - Transfusions are not needed in deletional Hb H disease

Beta Thalassemia Major: Natural History Transfused & Chelated

Options for Non-Transfused Thalassemia

- Hydroxyurea
 - Effective in a subgroup of patients with beta thalassemia intermedia
- Luspatercept (investigational)
 - Improves survival of red blood cell that are forming in the bone marrow
 - Initial clinical trial in transfusion-dependent thalassemia
 - Future trial in non-transfused thalassemia
- Hepcidin or hepcidin-mimics (investigational)
 - Expected to improve alpha:beta imbalance
 - No current clinical trials in non-transfused thalassemia

Cure for thalassemia

- •Bone marrow transplant
 - Siblings
 - Unrelated donors
- •Gene therapy
 - Lentiviral vectors
 - •Gene Editing