Gastric cancer: Exploring the differences between Asian and Western patients

Andrew H. Ko, MD Professor of Medicine, Division of Hematology/Oncology

Oct 8, 2016

Refresher: Gastric anatomy

Lauren classification of gastric cancer

Intestinal type: ~50%; more common in distal stomach

Diffuse type (infiltrative, linitus plastica): ~35%; more common in young patients, females, and a/w hereditary forms

Incidence and mortality associated with gastric cancer, 2016

	Estima	timated new cases		Estimated deaths		
	Male	Female	TOTAL	Male	Female	TOTAL
Gastric	16,480	9,890	26,370	6,540	4,190	10,730

American Cancer Society Facts and Figures, 2016.

Temporal trends in the United states

- Leading cause of cancer deaths in the U.S. until late 1930s
- Decline in incidence and mortality related to improvements in diet, food storage, and effective treatment for *H. pylori*
- However, significant increase in one particular type/location: GE junction cancers

Medinfographics website

Gastric cancer is most common in the united states amongst asianamericans

Gastric cancer: geographic trends

- Worldwide 2nd leading cause of cancer mortality (1 million/year)
- E. Asia > Europe/S America > United States/Australia/Africa
 - ¹/₂ of world total from Eastern Asia (esp China)
 - Mortality rates in E. Asia: 28.1 per 100,000 in men, 13.0 per 100,000 in women
 - Mortality rates in Northern America: 2.8 per 100,000 in men, 1.5 per 100,000 in women

Mortality

GLOBOCAN 2008 (IARC)

Hohenberger and Gretchel, Lancet 2009; Hartgrink et al, Lancet 2003; Rastogi et al, Nat Rev Cancer 2004

Estimated Gastric Cancer Incidence Worldwide in 2008*

Temporal trends by geographic region

Age-standardized incidence rate per 100,000 men

Age-standardized mortality rate per 100,000 men

GLOBOCAN 2008, International Agency for Research on Cancer

SO WHY IS GASTRIC CANCER MORE COMMON IN ASIANS?

- Genetic vs. environmental factors
- Evidence from migrant studies:
 - Subsequent generations of Japanese born in the United States show declining incidence and mortality rates from gastric cancer – however, still remain higher than U.S. whites
 - Groups with older immigration histories (Japanese, Filipinos) have cancer burdens more similar to those commonly observed in Westernized countries than groups with more recent immigration histories (Vietnamese, Korean)

why is gastric cancer more common in asians?: risk factors

- Consumption of salty foods, N-nitroso compounds; low fruit/vegetable consumption
- *H. pylori* infection (esp. cagA strain)
 - Increases risk for *distally* located, but NOT proximal, gastric cancers
- Tobacco
- Obesity/GERD/Barrett's
- Genetics: E-cadherin (CDH1) mutation
 - Associated with diffuse histology, autosomal dominant pattern, <u>high</u> penetrance rate (>70%), early-age onset
 - Also increased incidence of breast (lobular), colorectal, prostate ca
 - Appropriate candidates to consider prophylactic gastrectomy

JAPANESE PUBLIC HEALTH CENTER (STUDY COHORT I), 1990-2001: SALT INTAKE AND GASTRIC CANCER RISK ACCORDING TO GENDER

Tsugane, Cancer Science 2005, 96:1-6.

Habitual salt intake and risk of gastric cancer: A meta-analysis of prospective studies (D'elia et al, *Clin Nutr ition* 2012, 31:489)

High vs. low intake of:	RELATIVE RISK
SALT	1.68 (95% CI, 1.17-2.41)

H. pylori and gastric cancer risk

The NEW ENGLAND

JOURNAL of MEDICINE

Uemura et al, N Engl J Med 345:784, 2001

H. Pylori and gastric cancer: "The Asian Enigma"

Miwa et al, Am J Gastroent 2002; Parkin, Int J Cancer 2006.

- Large inter-country variation in incidence of gastric cancer and H. pylori seroprevalance among Asian countries
- Strong link
 between the two in some countries
 (Japan); weak link in others (India/ Bangaldesh)

Synergistic interaction between salt intake and H. Pylori infection to promote the development of gastric cancer?

Tsugane, Cancer Science 2005, 96:1-6.

Protective factors for development of gastric cancer

- Aspirin, NSAID use
 - Meta-analyses suggest possible lower risk associated with regular use (Yang, Dig Dis Sci 2010; 55:1533-9; Wang, J Natl Cancer Inst 2003;95:1784-91).
 - Effects may be more specific for non-cardia tumors and in Caucasians
- No clear association between circulating 25(OH)D concentrations and upper GI cancer risk (Abnet, Am J Epidem 2010;172:94-106).

SCREENING FOR GASTRIC CANCER

- Western countries: no population-wide screening approach
- Mass screening advocated in Asian countries (Japan, Korea)
 - May entail either double contrast barium xray/upper GI series *or* upper endoscopy
 - Screening intervals? (Every 2-5 years)
 - Age to begin screening? (40 or 50 y.o.)

HOW DOES GASTRIC CANCER DIFFER IN ASIANS VS NON-ASIANS?

Gastric cancer in Asian patients

- Younger age at diagnosis
- More localized disease at presentation (53% in Japan vs 27% in U.S.)
- More common in **distal (lower) portion** of stomach
- Greater proportion of **signet ring** histology

- National Cancer Center, Japan (Ohtsu, Gastrointest Cancer Res 2007, suppl 1:S10-15
- British Columbia Cancer Agency (Gill et al, J Clin Oncol 2003, 21:2070)
- California Cancer Registries (Theuer et al, Cancer 2000, 89:1883)

impact of ethnicity on prognosis in gastric cancer: results from the national cancer database (Al-Refaie, *Cancer* 2008;113:461-9)

Years From Diagnosis

How to explain differences in outcomes between asians and non-asians?

- Tumor biology and disease behavior?
 - Japanese patients' stage-stratified survival: Tokyo > Honolulu (Hundahl et al, Arch Surg 1996, 131:170-5)
- Practice patterns and treatment differences between East and West
 - Surgical approaches
 - Exposure and responsiveness to chemotherapy

Example #1: differences in surgical approaches

Which lymph nodes need to be removed during a gastric cancer operation?

N1 Lymph nodes (perigastric)

- 1 Right cardiac nodes
- 2 Left cardiac nodes
- 3 Nodes along the lesser curvature
- 4d Lymph nodes along the short gastric and the left gastroepiploic vessels
- 4s Lymph nodes along the right gastroepiploic vessels
- 5 Suprapyloric nodes
- 6 Infrapyloric nodes

N2 Lymph nodes (branches coeliac axis)

7 Nodes along root left gastric artery 8 Nodes along common hepatic artery 9 Nodes around coeliac axis 10 Nodes at splenic hilum 11 Nodes along splenic artery

N3 Lymph nodes

12 Nodes at the hepatoduodenal ligament 13 Retropancreatic (periduodenal) nodes 14 Nodes at the root of the mesentery

N4 Lymph nodes

15 Nodes along the middle colic vein 16 Para-aortic nodes

LYMPH NODE DISSECTION

- D0 (suboptimal)
- D1 (standard)
- D2 (extended)
- D3 (superextended)

Sungun et al, Lancet Oncol 2010; 11:439-49.

Early Japanese data supported more extensive lymph node dissection

National Cancer Center, Tokyo. 1969-1991. Maruyama et al. Sem Oncol. 1996;23:360-368.

Dutch trial of D1 vs. D2 dissection for gastric cancer (Bonenkamp J et al. *N Engl J Med* 1999;340:908-914)

	15-year survival Complication rate rate	Gastric Postop cancer- deaths related death	Locoregional 5-year recurrence survival rate
Ð1	25%	4%%	41%
ÐZ	43% 29%	10 %	47% 25%

Why does the extent of Lymph node resection matter?

MacDonald et al, N Eng J Med 345:725, 2001

Results of int-0116 led to **chemo + Radiation** becoming standard of care in the U.S. for post-op adjuvant therapy

Relapse-free survival 19 vs. 30 months (p < 0.001)

Overall survival 36 vs. 27 mos. (p < 0.001)

So Why didn't asians accept these data?

- Surgery Q/A performed
- Types of lymph node dissection performed on study patients:
 - -10% D2
 - -36% D1

-54% D0 (!!) *Therefore, with better surgery, Is chemoXRT necessary??* surgical outcomes between western vs. asian patients in adjuvant trials: differences attributable to tumor biology... or adequacy of operation?

	Median age	D2 dissection (or greater)	3-year overall survival	3-year relapse- free survival
	(C	ONTROL ARMS ON	NLY – NO ADJUV R	X)
United States	59 yrs	10%	41%	31%
Japan	63 yrs	100%	70%	60%
Korea/Taiwan/ China	55.8 yrs	100%	78%	59%

endoscopic mucosal resection (EMR) is also a more common approach in asia for early-stage disease

- Should only be used for early gastric cancers (confined to mucosal layer)
- Contraindications: > 2 cm in size, LN metastases, lymphovascular invasion, or poor differentiation

hopkins-gi.org

Example #2: Ethnic differences in sensitivity to anti-cancer drugs

ToGA trial in advanced gastric cancer: efficacy results

	Chemo alone	Chemo + trastuzumab	P value
ORR	34.5%	47.3%	P=0.0017
Median PFS	5.5 months	6.7 months	P=0.0002, HR 0.71
Median survival	11.1 months	13.5 months	P=0.0048, HR 0.74

No major increase in treatment-related toxicities; decrease in LVEF in < 5% of patients

Led to first targeted therapy being approved for gastric cancer!

DID TRASTUZUMAB BENEFIT ASIAN AND NON-ASIAN PATIENTS EQUALLY?

Ramucirumab: a new treatment option for advanced gastroesophageal cancer

Ramucirumab: anti-VEGFR antibody

Courtesy of Genentech.

Phase III RAINBOW trial

Wilke H, et al. J Clin Oncol 2014 (LBA7)

	RAM+PTX N=330	PLACEBO+PTX N=335	Signif?
Median OS	9.63 months	7.36 months	P=0.017 (HR 0.81)
Median PFS	4.40 months	2.86 months	P<0.0001 (HR 0.64)
ORR	28%	16%	P=0.0001

Differences in ORR and PFS, Japanese vs Western patients

	Jap	ban	West		
	RAM + PTX N = 68	PL + PTX N = 72	RAM + PTX N = 198	PL + PTX N = 200	
ORR, %	41 19		27	13	
p-value	0.0	035	0.0004		
Probably because many more				ore	
Median PFS	5.6 mos	Japanese p	Japanese patients received post-		
p-value	0.0002 (F	IR (103)	o therapy! (75%) <0.0001 (1	VS. 37%) HK U.031)	
Median OS	11.4 mos	11.5 mos	8.6 mos	5.9 mos	
p-value	0.51 (HF	R 0.880)	0.005 (HR 0.726)		

Wilke H, et al. J Clin Oncol 2014 (LBA7)

What to make of these data?

- Do clinical trials of new (cancer) therapies need to be validated in different ethnic groups given potential for differential responses and toxicity?
 - Do pivotal studies conducted in Asia need to be duplicated in the U.S. (and vice-versa)?
- Should clinical trials at least be stratified by ethnicity/race/nationality?
- How practical/feasible/ethical is this?

Finally, A GLIMPSE INTO THE FUTURE...

The immunotherapy revolution in cancer

Nature.com

Immunotherapeutic approaches have transformed the way we treat many cancer patients, including:

- Melanoma
- Lung cancer
- Bladder and renal cell cancer
- Head and neck cancer

Does immunotherapy work in gastric cancer?

Pembrolizumab in Gastric Ca: Maximum Percentage Change From Baseline in Tumor Size, N= 32

*Only patients with measurable disease per RECIST v1.1 by central review at baseline and at least 1 post-baseline tumor assessment were included (n = 32). Analysis cut-off date: March 23, 2015.

Bang, J Clin Oncol 33, 2015 (suppl, abstr 4001)

Clues from the Cancer Genome Atlas: Gastric cancer can be categorized into four molecular subtypes

Bass et al, Nature 2014, 513:202-9.

4 distinct molecular subtypes of gastric cancer

CONCLUSIONS

- The burden of gastric cancer is declining both in the United States and worldwide -- but remains 2nd leading cause of cancer mortality throughout the world
- Gastric cancer represents an ideal disease to demonstrate the differences between Asian and Western patients in terms of:
 - Incidence
 - Prognosis/clinical outcomes
 - Therapeutic approaches
- Need for greater understanding of the biologic/genetic differences in gastric cancer arising from different ethnicities
- Exciting new ways of categorizing and treating patients with gastric cancer are in the horizon!

THANK YOU